14.6 Videos Guide

14.6a

- The directional derivative of f(x, y) in the direction of $\mathbf{u} = \langle a, b \rangle$, a unit vector: $D_{\mathbf{u}}f(x, y) = f_x(x, y)a + f_y(x, y)b$
- In \mathbb{R}^3 , for f(x, y, z) and $\mathbf{u} = \langle a, b, c \rangle$, a unit vector: $D_{\mathbf{u}}f(x, y, z) = f_x(x, y, z)a + f_y(x, y, z)b + f_z(x, y, z)c$

14.6b

- The gradient vector $\nabla f = \langle f_x, f_y \rangle$ or $\nabla f = \langle f_x, f_y, f_z \rangle$
- The del operator ∇
- Dot product representation of the directional derivative $D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u}$

Exercises:

• Find the directional derivative of $f(x, y) = xy^3 - x^2$ at the point (1, 2) in the direction $\theta = \frac{\pi}{3}$.

14.6c

- Find the directional derivative of the function f(x, y, z) = xy² tan⁻¹ z at the point (2, 1, 1) in the direction v = ⟨1, 1, 1⟩.
- Characteristics of the gradient vector
 - $\nabla f(a, b)$ points in the direction of maximum change of f
 - The maximum rate of change of f at (a, b) is $|\nabla f(a, b)|$

14.6d

- Tangent plane and normal line to a level surface S: F(x, y, z) = k at the point (x₀, y₀, z₀)
 - Tangent plane: $F_{x}(x_{0}, y_{0}, z_{0})(x x_{0}) + F_{y}(x_{0}, y_{0}, z_{0})(y y_{0}) + F_{z}(x_{0}, y_{0}, z_{0})(z z_{0}) = 0$ Normal line: $\frac{x x_{0}}{F_{x}(x_{0}, y_{0}, z_{0})} = \frac{y y_{0}}{F_{y}(x_{0}, y_{0}, z_{0})} = \frac{z z_{0}}{F_{z}(x_{0}, y_{0}, z_{0})}$

Exercise:

• Find equations of (a) the tangent plane and (b) the normal line to the surface $x = y^2 + z^2 + 1$ at the point (3, 1, -1).